0 Ju l 1 99 9 Fractional Langevin equation to describe anomalous diffusion

نویسندگان

  • V. Kobelev
  • E. Romanov
چکیده

Fractional Langevin equation to describe anomalous diffusion. Abstract A Langevin equation with a special type of additive random source is considered. This random force presents a fractional order derivative of white noise, and leads to a power-law time behavior of the mean square displacement of a particle, with the power exponent being noninteger. More general equation containing fractional time differential operators instead of usual ones is also proposed to describe anomalous diffusion processes. Such equation can be regarded as corresponding to systems with incomplete Hamiltonian chaos, and depending on the type of the relationship between the speed and coordinate of a particle yields either usual or fractional long-time behavior of diffusion. Correlations with the fractional Fokker-Planck equation are analyzed. Possible applications of the proposed equation beside anomalous diffusion itself are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Langevin equation approach to diffusion magnetic resonance imaging.

The normal phase diffusion problem in magnetic resonance imaging (MRI) is treated by means of the Langevin equation for the phase variable using only the properties of the characteristic function of Gaussian random variables. The calculation may be simply extended to anomalous diffusion using a fractional generalization of the Langevin equation proposed by Lutz [E. Lutz, Phys. Rev. E 64, 051106...

متن کامل

Generalized Wiener Process and Kolmogorov’s Equation for Diffusion Induced by Non-gaussian Noise Source

We show that the increments of generalized Wiener process, useful to describe nonGaussian white noise sources, have the properties of infinitely divisible random processes. Using functional approach and the new correlation formula for non-Gaussian white noise we derive directly from Langevin equation, with such a random source, the Kolmogorov’s equation for Markovian non-Gaussian process. From ...

متن کامل

Anomalous Diffusion: a Dynamic Perspective

This paper investigates whether spontaneous, stationary velocity fluctuations can lead to deviations from the regular Fickian diffusion. A kinematic analysis reveals that anomalous diffusion, both fast and slow, arises from long-tailed velocity auto-correlation functions (VACF). This infinite span of interdependence of the random velocity leads to the breakdown of the central limit theorem for ...

متن کامل

Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.

In this paper we introduce a Langevin-type model of subdiffusion with tempered α-stable waiting times. We consider the case of space-dependent external force fields. The model displays subdiffusive behavior for small times and it converges to standard Gaussian diffusion for large time scales. We derive general properties of tempered anomalous diffusion from the theory of tempered α-stable proce...

متن کامل

The Fractional Langevin Equation: Brownian Motion Revisited

It is well known that the concept of diffusion is associated with random motion of particles in space, usually denoted as Brownian motion, see e.g. [1-3]. Diffusion is considered normal when the mean squared displacement of the particle during a time interval becomes, for sufficiently long intervals, a linear function of it. When this linearity breaks down, degenerating in a power law with expo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000